

G-SERIE

5-ACHS UNIVERSAL-BEARBEITUNGSZENTREN

G350
Generation 2

G550 Generation 1

G750

Generation 1

TECHNIK PUR AUF KLEINSTEM RAUM

Die 5-Achs Universal-Maschinenbaureihe von GROB

Die 5-Achs Universal-Bearbeitungszentren G350, G550 und G750 bieten allen Kunden der zerspanenden Industrie nahezu unbegrenzte Möglichkeiten in der Fräsbearbeitung von Werkstücken aus unterschiedlichsten Materialien.

HOHE PRODUKTIVITÄT, BESTE VERFÜGBARKEIT und AUSGEZEICHNETE WARTUNGSFREUNDLICHKEIT zeichnen die Universal-Maschinenbaureihe im Besonderen aus.

Eine kompakte Bauweise, beste Fräsleistungen, gute Einsehbarkeit und optimale Zugänglichkeit in den Arbeitsraum sind nur einige der herausragenden Maschinenmerkmale, die GROB zu einem zuverlässigen Partner für Ihre Fertigung machen. Dank umfangreicher Konfigurationsmöglichkeiten lassen sich unsere Bearbeitungszentren ideal auf Ihre Anforderungen anpassen.

Einzigartiges Maschinenkonzept

HORIZONTALE SPINDELLAGE

Die horizontale Spindellage ermöglicht den größtmöglichen Z-Verfahrweg und einen optimalen Spänefall

MAXIMALE STABILITÄT

Die einzigartige Anordnung der drei Linearachsen ergibt einen geringen Abstand der Führungen vom Arbeitspunkt (TCP) und eine besonders hohe Steifigkeit der Maschine.

"TUNNEL"-KONZEPT

Das "Tunnel"-Konzept schafft die Voraussetzung – auch bei längstem Werkzeug – das größtmögliche Bauteil innerhalb des Arbeitsraums kollisionsfrei schwenken und bearbeiten zu können.

GRÖSSTE FREIHEITSGRADE

Drei Linear- und zwei Rundachsen ermöglichen eine 5-Seiten-Bearbeitung sowie eine 5-Achsen-Simultaninterpolation. Die GROB-Maschinen bieten mit einem Schwenkbereich von 225° in der A'-Achse und 360° in der B'-Achse größtmögliche Freiheitsgrade.

Ein Konzept für unterschiedlichste Branchen

Ob Luft- und Raumfahrt, Maschinenbau, Werkzeug- und Formenbau, Automotive, Medizin- oder Energietechnik – unsere 5-Achs Universal-Bearbeitungszentren überzeugen durch vielfältigste Einsatzmöglichkeiten und sind für nahezu jeden Werkstoff bestens geeignet. Zudem sind die Universal-Bearbeitungszentren für Automationslösungen konzipiert und je nach Kundenanforderung auch als Fräs-Dreh-Maschinen in den Baugrößen G550T und G750T erhältlich.

Profitieren Sie von der Prozesssicherheit, Wirtschaftlichkeit und Langlebigkeit unseres Maschinenkonzepts.

Ideal für komplexe Bauteile mit hohen Ansprüchen an Zerspanvolumen

WERKZEUG- UND FORMENBAU

Optimale Bearbeitungsmöglichkeiten komplexer Fräskonturen

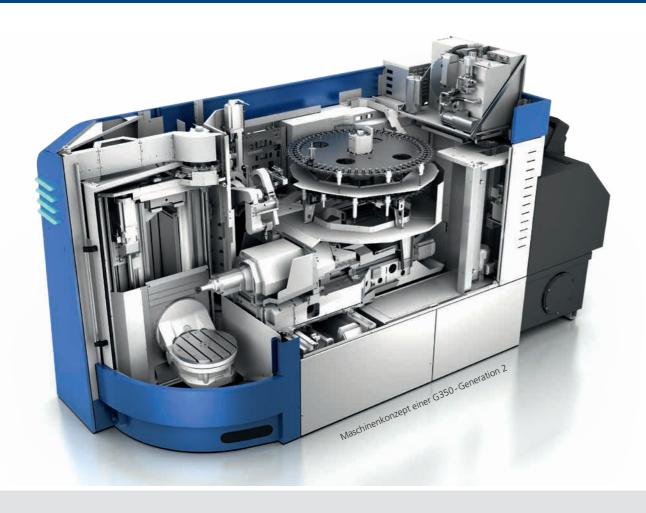
AUTOMOTIVE

für höchste Flexibilität

Profitieren Sie von 90 Jahren Erfahrung im Systemgeschäft

MEDIZINTECHNIK

Beste Voraussetzung für hohe Oberflächengüten


ENERGIETECHNIK

Präzise Bearbeitungsergebnisse bei herausragender Maschinenstabilität

IHRE VORTEILE im Überblick

- Hohe Produktivität
- Wartungsfreundlichkeit
- Beste Verfügbarkeit
- Kompakte Bauweise

- Gute Einsehbarkeit
- Flexibel einsetzbar
- Optimale Zugänglichkeit
- Rund-um-die-Uhr-Service

HORIZONTALES 5-ACHSEN-KONZEPT

Drei Linear- und zwei Rundachsen ermöglichen eine 5-Achsen-Simultanbearbeitung

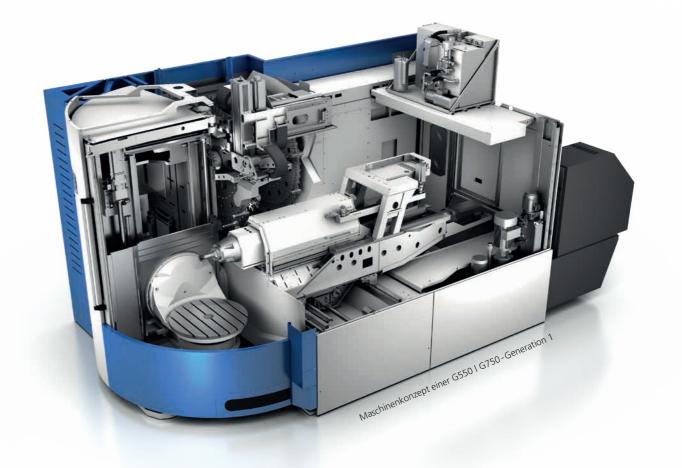
SCHWENK-/RUNDTISCH

Unbegrenzte Bearbeitungsmöglichkeiten aufgrund großer Freiheitsgrade des Schwenk-/Rundtisches

HORIZONTALE MOTORSPINDEL

Für höchste Ansprüche in der Zerspanung

MASCHINENBETT


Eigensteife Schweißkonstruktion für optimale Maschinensteifigkeit

ABSOLUTE WEGMESSSYSTEME

Inklusive Sperrluftdichtung in allen Linear- und Rundachsen

WERKZEUGSCHEIBENMAGAZIN

Schneller Werkzeugwechsel durch intelligente Anordnung des Magazins zur Motorspindel

SPÄNEENTSORGUNG

Unterbrechungsfreie Werkstückbearbeitung mit bestmöglicher Späneabfuhr durch einen Kratzerbandförderer

FLUIDSCHRANK

Beste Zugänglichkeit und Wartungsmöglichkeit ohne Maschinenstillstand

WARTUNGSFREUNDLICHKEIT

Große Wartungsraumtür für optimale Zugänglichkeit zu den Maschinenkomponenten

INTEGR. KÜHLSCHMIERSTOFFANLAGE

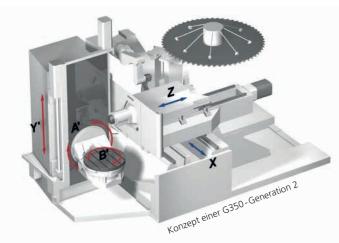
Inklusive innere Kühlschmierstoffzufuhr (23 bar) und Papierbandfilter

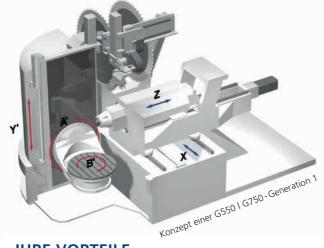
ÜBERKOPFBEARBEITUNG

Freier Spänefall – dank einzigartigem Schwenk-/Rundtischkonzept

STEUERUNGEN

Modernste Maschinensteuerungen von SIEMENS, HEIDENHAIN, FANUC oder BOSCH verfügbar


MASCHINENKONZEPT


Maximale Flexibilität durch Bearbeitung in jeder Winkellage

Durch die einzigartige Achsanordnung der Maschine ist eine Überkopfbearbeitung realisierbar, die Ihnen nahezu unbegrenzte Möglichkeiten in der Werkstückbearbeitung bietet.

Anordnung der Achsen und deren Antriebskonzept

Drei Linear- und zwei Rundachsen ermöglichen eine 5-Seiten-Bearbeitung sowie eine 5-Achsen-Simultaninterpolation.

Das Antriebskonzept basiert auf

- zwei symmetrisch angeordneten Kugelgewindetrieben und einer Gewichtskompensation bei G550 | G750
- dynamischen, verschleißfreien Torquemotoren in der A'- und B'-Achse.

IHRE VORTEILE

- Optimal ausgelegter Arbeitspunkt (TCP) für besonders
- Längster Z-Verfahrweg in dieser Maschinenklasse
- c Ein extrem großer Schwenkbereich von 225° in der A'-Achse
- Größtmögliches Werkstück im Arbeitsraum kann bei maximaler Werkzeuglänge bearbeitet werden

Überkopfbearbeitung

IHRE VORTEILE

- Optimaler Spänefall und somit keine Störungen durch Spanreste
- Kein Wärmeeintrag in die Maschine durch liegenbleibende Späne auf Werkstück und Spannmittel
- Einfaches Reinigen von Bauteilen vor dem Werkstückwechsel
- Kein Verbleib von Kühlschmierstoffresten im Werkstück

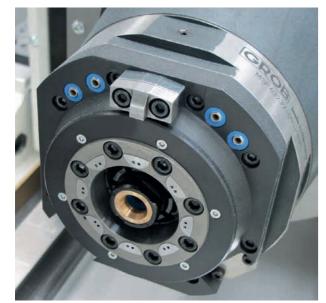
Werkstückbearbeitung mit maximaler Werkzeuglänge

Aufgrund des speziellen Achsenkonzepts ist auch bei maximaler Werkstückgröße die volle Werkzeuglänge in jeder Achsstellung einsetzbar. Der Arbeitsraum wird dank des "Tunnel"-Konzepts komplett ausgenutzt, da sich die Motorspindel samt Werkzeug komplett in den Spindelschacht zurückziehen kann.

In besonderen Fällen, bei denen das Werkstück größer ist als die hier abgebildeten maximalen Werkstückkonturen, kann eine Bearbeitung durch Umspannung und eine spezielle Achsanordnung ermöglicht werden.

G350 Werkzeuglänge max	ς.
Einscheibenmagazin [mm]	HSK-A63 365
Doppelscheibenmagazin (unten/oben/über beide) [mm]	HSK-A63 365/180/550*

G550 Werkzeuglänge max.		
Einscheibenmagazin	HSK-A63	
[mm]	465	
Doppelscheibenmagazin	HSK-A63	
(vorn/hinten) [mm]	400/465	
	HSK-A100 400/500	


G750 Werkzeuglänge max	c.
Einscheibenmagazin	HSK-A63
[mm]	650* (525)
Doppelscheibenmagazin	HSK-A63
(vorn/hinten) [mm]	650* (525)/500
	HSK-A100 650* (590)/500

* Mit Einschränkungen im Arbeitsraum

Hochwertige Komponenten und umfangreiche Funktionen bereits in der Grundausstattung enthalten

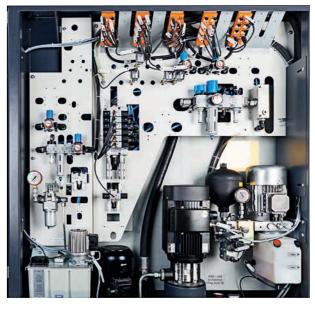
Motorspindel und Werkzeugmagazin bilden das Herzstück eines jeden Universal-Bearbeitungszentrums. Auf die Maschinengrößen bestens abgestimmte Ausführungen können je nach Kundenanforderung individuell kombiniert werden.

Motorspindel

Werkzeugscheibenmagazin

Arbeitsraumspülung und Beleuchtung

Innere Kühlschmierstoffzufuhr (23 bar)

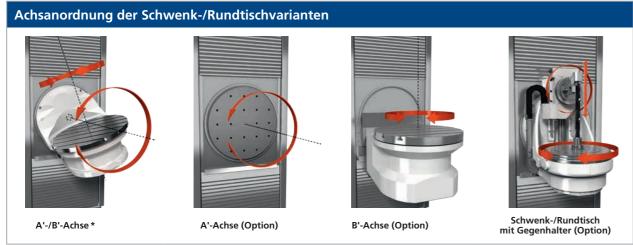

Zentralisierung aller wartungsrelevanten Maschinenkomponenten

Die zentrale Anordnung der Maschinenkomponenten nach ergonomischen Aspekten gewährleistet unter anderem beste Zugänglichkeit zu Fluid- und Elektroschrank und eine leichte Orientierung für Wartung und Inspektion.

Elektroschrank

Fluidschrank

Späneentsorgung und integrierte Kühlschmierstoffanlage


Maschinenkühlaggregat

MASCHINENKOMPONENTEN

Vielseitige Bearbeitungsmöglichkeiten durch leistungsstarke Schwenk-/Rundtische

Je nach Anforderungen stehen verschiedene Schwenk-/Rundtischvarianten zur Auswahl. Die leistungsstarken Rundtische basieren auf modernster Torque-Motortechnik und bieten höchste Dynamik.

* Auch als T-Option mit höherer Drehzahl verfügbar (G550TIG750T)

Schwenk-/Rundtisch mit fahr- und schwenkbarem Gegenhalter (Option) **

Für die Bearbeitung langer, schlanker Bauteile, wie z.B. von Turbinenschaufeln oder Werkzeugen, sind speziell hierfür konzipierte Tischausführungen verfügbar. Je nach Bauteil- und Bearbeitungsanforderungen kann aus einer Vielzahl an Konfigurationsmöglichkeiten gewählt werden.

Die Bauteilspannung kann z.B. durch eine im Tisch verbaute HSK-T100-Schnittstelle, eine Stabilisierung durch den Gegenhalter z.B. in Form einer Spitze oder Lünette erfolgen.

	G350	G550
Tischdurchmesser [mm]	250	400
Störkreisdurchmesser [mm]	280	450
Drehwinkel B'-Achse [°]	n x 360	n x 360
Drehzahl max. B'-Achse [min-1]	80	50
Spitzenweite [mm]***	375	530
Zulässiges Beladegewicht max. [kg]	200	700

 $[\]ensuremath{^{\star\star}}\xspace$ Bei Verwendung des Standardgegenhalters mit Spitze und Lünette

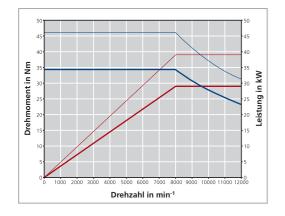
Schwenk-/Rundtisch A'-/B'-Achse

Allgemeine technische Daten zum Schwenk-/Rundtisch A'-/B'-Achse			
	G350	G550	G750
Schwenkwinkel A'-Achse [°]	-180/+45	-180/+45	-180/+45
Drehzahl max. A'-Achse [min ⁻¹]	30	25	20
Antriebsart A'-/B'-Achse	Torque- motor	Torque- motor	Torque- motor
Drehwinkel B'-Achse [°]	n x 360	n x 360	n x 360
Drehzahl max. B'-Achse [min ⁻¹]	50	50	30

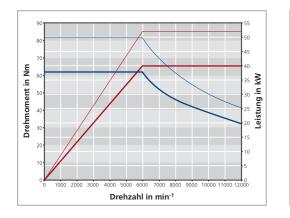
Rundtischoberfläche mit parallel angeordneten T-Nuten (Standard)			
	G350	G550	G750
Richtnut (Anzahl/Breite/Qualität) Spannnut (Anzahl/Breite/Qualität)	1 x 14 H7 4 x 14 H12	1 x 14 H7 6 x 14 H12	1 x 18 H7 8 x 18 H12
Tischdurchmesser [mm]	570	770	950
Störkreisdurchmesser [mm]*	600	900	1.280
Maximal zulässiges Beladegewicht inklusive Spannvorrichtung [kg]	400	800	1.500

2 Rundtischoberfläche mit Palettenspannsystem (Option)			
	G350	G550	G750
Palettengröße [mm]	400 x 400	630×630	800x800
Maximale Palettenbeladung [kg]	340	700	1.000

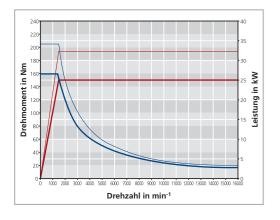
^{*} Maximale Werkstückgröße mit Einschränkungen bei Maschinen mit Palettenwechsler

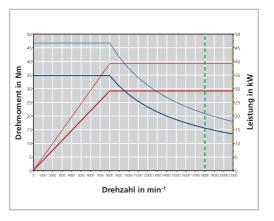

RUNDTISCH () MASCHINE • VERFÜGBARKEIT AUF EINEN BLICK!					
Schwenk-/ Rundtisch	A'-/B'-Achse	A'-Achse	B'-Achse	mit Gegenhalter 250 mm	mit Gegenhalter 400 mm
G350	•	•	•	•	_
G550	•	•	•	_	•
G750	•	•	•	_	_

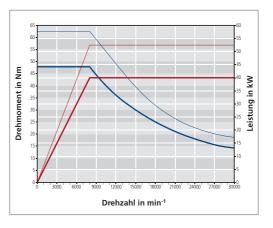
^{***} Gemessen von Oberkante Tisch bis Spitze im Gegenhalter

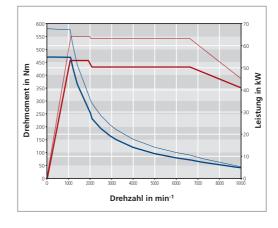

Motorspindeln von GROB

Neben der großen Auswahl an Spindelvarianten werden bevorzugt die von GROB selbst entwickelten und gefertigten Motorspindeln zur optimalen Prozessauslegung eingesetzt. Diese sind optimal auf die G-Module abgestimmt und weisen folgende, höchste Qualitätsmerkmale auf:


- Kürzeste Hochlaufzeiten Gute Zugänglichkeit und Wartbarkeit Eignung für alle gängigen Kühlschmierstoffe
- Universelle Einsetzbarkeit Beste mechanische Eigenschaften Langlebigkeit


Motorspindel 47 Nm, 12.000 min ⁻¹ , (Standard)			
Werkzeugschnittstelle	HSK-A63		
Spindellagerung Durchmesser am vorderen Lager [mm]	70		
Drehzahl n _{max} [min ⁻¹]	12.000		
Antriebsleistung max. bei 100 %/40 % ED [kW]	29/39		
Spindel-Drehmoment max. bei 100 %/40 % ED [Nm]	34,6/46,6		


Motorspindel 83 Nm, 12.000 min ⁻¹	
Werkzeugschnittstelle	HSK-A63
Spindellagerung Durchmesser am vorderen Lager [mm]	70
Drehzahl n _{max} [min ⁻¹]	12.000
Antriebsleistung max. bei 100 %/40 % ED [kW]	40/52
Spindel-Drehmoment max. bei 100 %/40 % ED [Nm]	63,7/82,8


Motorspindel 206 Nm, 16.000 min ⁻¹			
Werkzeugschnittstelle	HSK-A63		
Spindellagerung Durchmesser am vorderen Lager [mm]	80		
Drehzahl n _{max} [min ⁻¹]	16.000		
Antriebsleistung max. bei 100 %/40 % ED [kW]	25/32		
Spindel-Drehmoment max. bei 100 %/40 % ED [Nm]	159/206		

Motorspindel 47 Nm, 18.000/21.000 min ⁻¹						
Werkzeugschnittstelle	HSK-A63					
Spindellagerung Durchmesser am vorderen Lager [mm]	70					
Drehzahl n _{max} [min ⁻¹]	18.000 21.000					
Antriebsleistung max. bei 100 %/40 % ED [kW]	29/39					
Spindel-Drehmoment max. bei 100 %/40 % ED [Nm]	34,6/46,6					

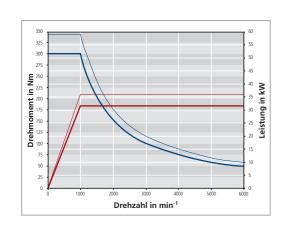
Motorspindel 63 Nm, 30.000 min ⁻¹	
Werkzeugschnittstelle	HSK-A63
Spindellagerung Durchmesser am vorderen Lager [mm]	65
Drehzahl n _{max} [min ⁻¹]	30.000
Antriebsleistung max. bei 100 %/40 % ED [kW]	40/53
Spindel-Drehmoment max. bei 100 %/40 % ED [Nm]	48/63

Motorspindel 575 Nm, 9.000 min ⁻¹	
Werkzeugschnittstelle	HSK-A100
Spindellagerung Durchmesser am vorderen Lager [mm]	110
Drehzahl n _{max} [min ⁻¹]	9.000
Antriebsleistung max. bei 100 %/40 % ED [kW]	54/65
Spindel-Drehmoment max. bei 100 %/40 % ED [Nm]	470/575

— Leistung S1: 100 % ED — Leistung S6: 40 % ED — Drehmoment S1: 100 % ED — Drehmoment S6: 40 % ED

Motorspindel 340 Nm, 10.000 min ⁻¹	
Werkzeugschnittstelle	HSK-A100
Spindellagerung Durchmesser am vorderen Lager [mm]	100
Drehzahl n _{max} [min ⁻¹]	10.000
Antriebsleistung max. bei 100 %/40 % ED [kW]	20/26
Spindel-Drehmoment max. bei 100 %/40 % ED [Nm]	262/340

Motorspindel mit Planzugeinrichtung*

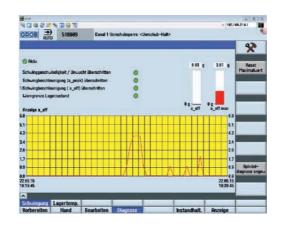

Die GROB-Motorspindel mit Planzugeinrichtung erlaubt die Herstellung von komplexen Innen- und Außenkonturen mit aussteuerbaren Werkzeugen.

IHRE VORTEILE

• Hohe Systemsteifigkeit

• Keine zusätzliche Störkontur an der Motorspindel

- Kein Referenzieren notwendig
- Hohe Schnittgeschwindigkeiten während der Konturbearbeitung
- Niedrige Werkzeugkosten



Motorspindel 344 Nm, 6.000 min ⁻¹	
Werkzeugschnittstelle	HSK-A100
Spindellagerung Durchmesser am vorderen Lager [mm]	100
Drehzahl n _{max} [min ⁻¹]	6.000
Antriebsleistung max. bei 100 %/40 % ED [kW]	31,5/36
Spindel-Drehmoment max. bei 100 %/40 % ED [Nm]	301/344
Spindelantrieb	Synchronmotor
Hub Aussteuerstange (axial) [mm]	40
Arretierung Aussteuerstange	Bajonett
Werkzeuglöseeinheit	hydraulikfrei

* Detaillierte Informationen auf Anfrage

— Leistung S1: 100 % ED — Leistung S6: 40 % ED — Drehmoment S1: 100 % ED — Drehmoment S6: 40 % ED

Spindeloptionen

GROB-Spindeldiagnose (GSD)

Die GROB-Spindeldiagnose ist ein System zur automatischen Zustandsüberwachung der Motorspindel.

IHRE VORTEILE

- Verlängerung der Lebensdauer der Motorspindel durch Erkennen von kritischen Betriebszuständen
- Condition Monitoring
- Prozessoptimierung/Reduzierung des Werkzeugverschleißes
- Vermeidung von Maschinenstillstand durch planbare Instandhaltung

Stator mit Funkempfänger Rotor mit integrierter Sensorik und Funksender

* Detaillierte Informationen auf Anfrage

SPIN

GROB-Erkennungssystem für Span-in-Spindel (SiS)*

Das System ermöglicht die frühzeitige Erkennung von Werkzeugspannfehlern aufgrund von Spaneinschlüssen zwischen HSK-Plananlage und Spindelnase ab 10 µm.

IHRE VORTEILE

- Vermeidung von Ausschussbauteilen und Rundlauffehlern
- Prävention von Schäden aufgrund von Bearbeitungsfehlern
- Optimierung des Bearbeitungsprozesses
- Schonung von Werkzeug und Motorspindel
- Erhöhung der Prozessstabilität

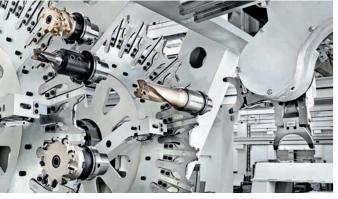
NDELTYP 🕩 MASCHINE • VERFÜGBARKEIT AUF EINEN BLICK				
NUCLIYE IV MASCHINE • VERFUUDAKKEH AUF FINEN DEICK	DEITVD 4 L M	IACCUINE - VEDE	LICDADVEIT A	HE CINICAL DI ICU
		IASCHINE VEKE	UUDARREII A	OF EINEN BLICK

Werkzeugschnittstelle** für Kegelhohlschäfte nach ISO 12164-1	HSK- A63	HSK- A63	HSK- A63	HSK- A63	HSK- A63	HSK- A63	HSK- A100	HSK- A100	HSK- A100
Spindellagerung Durchmesser am vorderen Lager [mm]	70	70	80	70	70	65	110	100	100
Drehzahl n _{max} [min ⁻¹]	12.000	12.000	16.000	18.000	21.000	30.000	9.000	10.000	6.000
Antriebsleistung max. bei 100 % / 40 % ED [kW]	29/39	40/52	25/32	29/39	29/39	40/53	54/65	20/26	31,5/36
Spindel-Drehmoment max. bei 100 %/40 % ED [Nm]	34,6/46,6	63,7/82,8	159/206	34,6/46,6	34,6/46,6	48/63	470/575	262/340	301/344
Verfügbarkeit mit Öl-Luft-Schmierung	_	_	•	_	•	•	_	_	_
G350	•	•	•	•	•	•	_	_	_
G550	•	•	•	•	•	•	•	•	•
G750	•	•	•	•	•	•	•	•	•

** Optionale Werkzeugschnittstellen auf Anfrage

14 15

enkomponenten


IVIASCHINENKOWPONENTEN

Werkzeugmagazin – vielseitige Kombinationsmöglichkeiten

Schnelle Span-zu-Span-Zeiten, geringer Platzbedarf und beste Zugänglichkeit zeichnet die Werkzeugmagazintechnik von GROB aus.

Beispiel G350-Generation 2

Beispiel G550-Generation 1

Einscheibenmagazin

- Werkzeugwechsel je nach Baugröße durch Pick-up-Verfahren oder über schnellen Werkzeugwechselarm mit schwenkbarem Doppelgreifer
- Hauptzeitparalleles Be- und Entladen
- Zugang zur Werkzeugmagazinscheibe jederzeit möglich
- Anstehender Werkzeugwechsel beginnt nach dem Schließen der Werkzeugmagazintür
- Horizontale Anordnung der Magazinscheibe bei G350-Generation 2
- Vertikale Anordnung der Magazinscheibe bei G550 | G750

Doppelscheibenmagazin

- Horizontale, übereinander angeordnete Magazinscheiben bei G350 (Scheiben gekoppelt)
- Vertikale, nebeneinander angeordnete Magazinscheiben bei G550 | G750 (Scheiben unabhängig voneinander drehbar)
- Werkzeugwechselverfahren über schnellen Werkzeugwechselarm mit schwenkbarem Doppelgreifer
- Hauptzeitparalleles Be- und Entladen
- Zugang zu den Werkzeugmagazinscheiben jederzeit möglich
- Anstehender Werkzeugwechsel beginnt nach dem Schließen der Werkzeugmagazintür

SCHEIBENMAGAZIN () MASCHINE • VERFÜGBARKEIT AUF EINEN BLICK!									
		Eins	scheibenmag	azin			Doppelschei	benmagazin	
Werkzeugschnittstelle*	HSK-A63	HSK-A63	HSK-A63	HSK-A63	HSK-A100	HSK-A63	HSK-A63	HSK-A63	HSK-A100
Anzahl der Werkzeugplätze	60	50	60	60	30	117	105**	2x60	2x30
Scheibenanordnung	horizontal	vertikal	vertikal	vertikal	vertikal	horizontal	horizontal	vertikal	vertikal
Werkzeugwechselverfahren									
▶ Pick-up	_	•	•	_	_	_	_	_	_
▶ Werkzeugwechselarm	•	_	_	•	•	•	•	•	•
G350	•	_	_	_	_	•	•	_	_
G550	_	•	•	_	_	_	_	•	•
G750	_	_	_	•	•	_	_	•	•

^{*} Optionale Werkzeugschnittstellen auf Anfrage

** Für Werkzeuglängen > 365 mm

16.000 min⁻¹

9.000/10.000 min⁻¹

Werkzeugzusatzmagazin (TM)

Das Werkzeugzusatzmagazin erhöht die Werkzeugkapazität der Grundmaschine.

- Bestückung des Zusatzmagazins mit Werkzeugen während der Bearbeitung
- Be- und Entladung mehrerer Werkzeuge gleichzeitig möglich
- Keine Beeinträchtigung der Hauptzeit, wenn sich das Werkzeug für den nächsten Bearbeitungsschritt im Scheibenmagazin der Grundmaschine befindet
- Bereitstellung und Verwaltung der Werkzeuge über Bediensoftware und Bedieneinheit

ANZAHL DER WERKZEUG	PLÄTZE ▶ G	350						
Grundma		(G	zeugzusa esamtwer undmasch	kzeuganza	ahl			
Motorspindel	Werkzeug- schnittstelle	Anzahl der Werkzeug- plätze	Mit SIEMENS-Steuerung			Mit HEIDENHAIN- ode FANUC-Steuerung		
Einscheibenmagazin			TM200 TM200					
Für alle Spindeltypen	HSK-A63	60	251			251 251		
Doppelscheibenmagazin			TM200 TM200					
Für alle Spindeltypen	HSK-A63	117	311			311		
Für alle Spindeltypen	HSK-A63	105*	293		293 293			
ANZAHL DER WERKZEUG	PLÄTZE → G	550 G750						
Einscheibenmagazin			TM167	TM218	TM145	TM167	TM218	TM145
12.000/18.000/30.000 min ⁻¹	HSK-A63	60	221 272 —		218	269	_	
16.000 min ⁻¹	HSK-A63	50	211 262 —		208	259	_	
Doppelscheibenmagazin			TM167	TM218	TM145	TM167	TM218	TM145
12.000/18.000/30.000 min ⁻¹	HSK-A63	2x60	281	332	_	278	329	_

281

332

200

* Für Werkzeuglängen > 365 mm

196

329

278

WERKZEUGZUSATZMAGAZIN 4	MASCHINE •	VERFÜGBARKE	EIT AUF EINEN E	BLICK!
Zusatzmagazin (TM)	TM200	TM167	TM218	TM145
Werkzeugschnittstelle**	HSK-A63	HSK-A63	HSK-A63	HSK-A100
G350	•	_	_	_
G550	_	•	•	•
G750	_	•	•	•

2x60

HSK-A63

HSK-A100

** Optionale Werkzeugschnittstellen auf Anfrage

16

ZUBEHÖR

Leistungsstarke CNC-Steuerungen

Bei allen Universal-Bearbeitungszentren von GROB kann unter den modernsten CNC-Steuerungen der Marktführer gewählt werden.

GROB-Pilot⁴M

Die duale Multitouch-Bildschirmlösung

* Zweiter Monitor optional erhältlich; Abbildung beispielhaft; Bedienpult abhängig vom Hersteller

der G350 - Generation 2!*

SIEMENS 840D sl

- Neue Bedienoberfläche "SINUMERIK Operate"
- Einfachste interaktive Programmierung durch identisches "Look & Feel" für Drehen und Fräsen
- Look-ahead-Funktion für bis zu 150 NC-Sätze (parametrierbar)
- Grafische Simulation des Bearbeitungsablaufs mit Draufsicht, Darstellung in drei Ebenen und in 3D; Synchrongrafik während der Bearbeitung
- 3D-Bearbeitung, optionale 3D-Werkzeugkorrektur über Flächennormalen-Vektor

- Etablierte Bewegungsführung für kurze Bearbeitungszeiten und perfekte Werkstückoberflächen und -genauigkeiten
- Einfache Programmierung über Klartext, DXF-Import oder Datenimport aus CAM-Systemen
- Spezielles Funktionspaket für den Formenbau
- Umfangreiche Funktionen für verschiedenste Aufgabenstellungen in der Fräsbearbeitung
- Lösungspakete "Dynamic Efficiency" und "Dynamic Precision"

FANUC 30i-B

- DIN-/ISO-Programmieren an der Maschine oder offline über CAD-/CAM-System (z.B. Formenbauanwendungen)
- Neue, optimierte Bewegungsführung (Nano-Glättung)
- Verbesserte Oberfläche durch "High-speed Smooth TCP"
- Optimierte Technologiezyklen, Automatikmesszyklen und effizente High-Speed-Cutting-Funktionen
- Innovative Werkzeug- und Programmverwaltung

Auf Anfrage mit BOSCH-Steuerung verfügbar

Kühlschmierstoff-Hochdruckanlage

Zum Erzeugen des Kühlschmierstoff-Hochdrucks ist in der Standardausführung eine 23-bar-Kühlschmierstoff-Hochdruckpumpe mit Ein-/Aus-Funktionalität eingebaut. Bei höheren Druckanforderungen können Kühlschmierstoff-Hochdruckpumpen mit folgenden, stufenlos regelbaren Druckbereichen gewählt werden:

- 5-38 bar
- 10-80 bar

Angebaut auf dem Kühlschmierstofftank

Kühlaggregat für den Kühlschmierstoff

Externer Durchlaufkühler zum Kühlen des Kühlschmierstoffs

- ▶ Verfügbar für alle drei Kühlschmierstoff-Hochdruckanlagen
- ▶ Bei der 10-80-bar-Variante wird das Kühlaggregat empfohlen

Dezentrale Arbeitsraumabsaugung

Für die Reinhaltung des Arbeitsraums steht ein Emulsionsnebelabscheider mit folgenden Komponenten zur Verfügung:

- Integrierte Vorabscheiderstufe (nur bei G350 und G550)
- Regenerierbare Filtrationsstufe
- Integrierte Nachfilterstufe (nur bei G350 und G550)

Die regelbare Absaugleistung wird jeweils optimal an den Maschinenstatus (Zerspanen, Werkzeug-/Werkstückwechsel) angepasst.

Regelbare Absaugleistung

G350 ▶ 800 m³/h

Gut zugänglich im Wartungsraum der Maschine angebaut **G550** ▶ 800 m³/h

Gut zugänglich im hinteren Bereich des Maschinendachs angebaut **G750** ▶ 2.000 m³/h

Gut zugänglich im hinteren Bereich des Maschinendachs angebaut

Ölskimmer

Für eine optimale Reinhaltung des Kühlschmierstoffs wird mit Hilfe des Ölskimmers Hydraulik- und/oder Schmieröl von der Oberfläche des Kühlschmierstoffs entfernt.

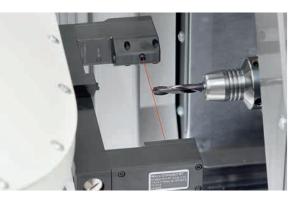
Enthaltene Komponenten:

- Riemenantrieb
- Abstreifer
- Auffangbehälter mit Niveauschalter

Angebaut am Kühlschmierstofftank

Werkzeugreinigungseinrichtung

- Hauptzeitparalleles Bürsten und Abblasen der Kegel-/Plananlagefläche der Werkzeugschnittstelle
- Kombinierte, GROB-patentierte Bürst-/Abblaseinrichtung


Integriert in Werkzeugmagazin

Werkzeugcodierung

- Ermöglicht einen Datenfluss zwischen Werkzeug und Maschinensteuerung
- Rüstzeitenreduzierung
- Schreib- und Lesegerät für Werkzeuge mit Werkzeugcodierung
- Fehlervermeidung bei Eingabe der Werkzeugdaten


Angebaut am Werkzeugeinlegeplatz

Lasermesssystem für Fräswerkzeuge

- Berührungslose, optische Werkzeugüberwachung/-vermessung von rotierenden Werkzeugen (z.B. Fräser, Bohrer)
- Vermessung und Kontrolle folgender Werkzeugparameter: Werkzeuglänge, Werkzeugdurchmesser, Werkzeugbruch, Werkzeugverschleiß, Werkzeugschneidenzustand

Angebaut am Schwenk-/Rundtisch

Elektromechanische Werkzeuglängenprüfeinrichtung

- Bruchkontrolle über eine taktile Werkzeuglängenprüfeinrichtung
- Hauptzeitparalleler Kontrollvorgang
- Bruchkontrolle ab einer Länge von 100 mm möglich

Angebaut im Werkzeugmagazin an der Werkzeugübergabestelle, zwischen Motorspindel und Werkzeugmagazinscheibe

Verfügbare Bedienhandgeräte

Allgemeine Ausstattung:

Tasten für die Vorwahl von Achsrichtungen, Vorschub, Eilgang, Not-Halt und Zustimmen der Achsbewegung

Zusätzliche Möglichkeit der Werkzeugdateneingabe durch Anschluss des Bediengeräts an die Werkzeugbeladestation

Kompaktes Bediengerät für hohe Flexibilität bei Einricht-/ und Rüstarbeiten (inkl. elektronischem Handrad)

Maschinenzustandsleuchte

Dreifarbige Stableuchte zum Anzeigen des aktuellen Maschinenzustands.

Unterschieden wird dabei zwischen Automatikbetrieb (grün), Warnung (gelb) und Störung (rot).

Messtaster

- Einsatzspektrum:
- Ausrichten und Messen von Werkstücken oder Spannvorrichtungen; Setzen von Null- und Bezugspunkten für anschließende Bearbeitung; Maschinenkinematik-Vermessung (optional)
- Messtaster inklusive Datenübertragung mit Infrarot oder Funk
- Nebenzeitenreduzierung beim Rüsten und Messen
- Erhöhen der erreichbaren Werkstückgenauigkeit

Victoria de la companya del companya del companya de la companya del la companya de la companya

Palettenwechselsystem

Verbesserte Produktivität durch hauptzeitparalleles Rüsten während der Werkstückbearbeitung mit einem 2-fach-Palettenwechselsystem.

Funktionsprinzip eines 2-fach-Palettenwechselsystems

- Das Austauschen der Paletten zwischen Rüstplatz und Arbeitsraum der Maschine erfolgt über eine drehbare Palettenwechseleinrichtung.
- Durch ein optimal auf die Maschine abgestimmtes Palettenspannsystem werden die Paletten auf dem Rundtisch und Rüstplatz der Maschine gespannt.
- Eine hohe Prozesssicherheit wird durch ein integriertes Auflagekontrollsystem und durch Abspülen des Nullpunkt-Spannsystems während des Palettenwechselvorgangs gewährleistet.

Palettenausführung

Die Oberseite der Palette weist im Standard ein Rasterbohrbild auf. Optional ist auch eine Palettenoberfläche mit T-Nuten verfügbar.

IHRE VORTEILE

- Hauptzeitparalleles Rüsten bzw. Be- und Entladen der Werkstücke auf dem Rüstplatz der Maschine
- ◆ Kompakt in die Maschine integriertes 2-fach-Palettenwechselsystem
- Beste Zugänglichkeit zum manuell dreh- und arretierbaren Rüstplatz
- Schneller Tausch der Paletten zwischen Arbeitsraum und Rüstplatz
- Auflagekontrollsystem für die Paletten bereits im Palettenwechselsystem enthalten
- Weit öffnende Rüstplatztüren mit der Möglichkeit zur Kranbeladung

PALETTE	NWECHSELSYS1	TEM ◆ MASCHIN	E • VERFÜGBAR	KEIT AUF EINEN I	BLICK!
	Palettengröße [mm]	Palettenoberfläche mit Rasterbohrbild [mm]	Palettenoberfläche mit T-Nuten [mm]	Maximale Palettenbeladung [kg]	Palettenwechselzeit [s]*
G350	400 x 400	Gewinde M12; Raster 50	Breite 14; Abstand 50	340	12,0
G550	630 x 630	Gewinde M16; Raster 100	Breite 18; Abstand 100	700	13,0
G750	800 x 800	Gewinde M16; Raster 100	Breite 18; Abstand 100	1.000	16,0

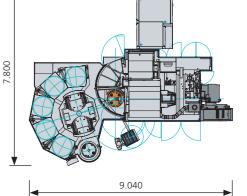
* Zeitangabe ohne Auflagekontrollsystem

Individuelle Automatisierungslösungen

Seit Jahrzehnten setzen unsere Kunden in der Großserienfertigung auf Automationslösungen von GROB. Diese Erfahrungen finden sich direkt in unseren Automatisierungslösungen wieder und machen GROB damit zu einem starken Partner – von Lösungen mit Werkstückspeichern bis hin zu hoch flexiblen Fertigungssystemen.

GROB-Palettenrundspeichersystem (PSS-R)

Das Palettenrundspeichersystem von GROB erweitert das G-Modul zu einer flexiblen Fertigungszelle und bietet somit einen optimalen Einstieg in eine automatisierte und hoch effiziente Fertigung.


Allgemeine Ausstattungsmerkmale:

- Ausführungsvarianten mit Palettenspeicherplätzen auf 1 bis 3 Ebenen
- Ein manuell dreh- und arretierbarer Rüstplatz mit bester Zugänglichkeit neben dem Maschinenbedienpult angeordnet
- Schneller 180°-Palettenwechsel bei Nutzung von zwei Paletten durch ein innovatives Regalbediengerät
- Visualisieren und Organisieren von Fertigungsaufträgen durch eine flexible Leitsoftware

IHRE VORTEILE

- Wirtschaftliche Fertigung durch Erhöhung der Maschinenauslastung
- Möglichkeit zur Bearbeitung in mannlosen/mannarmen Schichten
- Hohe Speicherdichte bei geringer Aufstellfläche
- Einfaches Nachrüsten an bestehende Maschinen
- ❸ Beste Einsehbarkeit in den Arbeitsraum und zu den Palettenspeicherplätzen
- Palettenspeicher-Lösungen mit geringer Anschaffungsinvestition
- Hauptzeitparalleles Rüsten der Maschine
- Für Maschinen mit oder ohne 2-fach-Palettenwechselsystem erhältlich
- Komplettlösung aus einer Hand

٦.

Palettenlinearspeichersystem (PSS-L)

Das Palettenlinearspeichersystem ist ein Baukastensystem für eine Einzelmaschine oder die Verkettung gleicher Maschinen. Je nach Kundenanforderung sind für Paletten desselben Typs zwei oder mehr Speicheretagen sowie die Anzahl der gewünschten Rüstplätze frei wählbar.

Ausstattungsmerkmale abgebildeter Ausführung:

- Universal-Bearbeitungszentrum G550
- 10 Palettenspeicherplätze auf 2 Ebenen (Palettengröße: 630 x 630 mm)
- 1 Regalbediengerät für Palettenhandling
- 1 Rüstplatz

Kundenspezifische Automationslösung

Die zunehmenden Anforderungen im Bereich der Automation erfordern eine speziell auf den Kunden zugeschnittene Individuallösung für höchste Flexibilität und Wirtschaftlichkeit.

Hierfür bietet GROB Lösungen von Kompakt-Palettenspeichersystemen über individuelle Werkstückhandhabung bis hin zu flexiblen Fertigungssystemen mit mehreren Maschinen und zentraler Werkzeugversorgung.

► Kompakt-Palettenspeichersystem

Das Kompakt-Palettenspeichersystem bietet eine noch größere Flexibilität in der Konfiguration der Palettenspeicherplätze, erlaubt einen gemischten Betrieb von Paletten unterschiedlicher Größen und berücksichtigt die Länge der Werkstücke.

Ausstattungsmerkmale abgebildeter Ausführung:

- Universal-Bearbeitungszentrum G550
- 40 Speicherplätze für kompakte Paletten/Werkstücke mit HSK-Schnittstelle auf 4 Ebenen
- 1 Greiferarm für Paletten-/Werkstückhandling
- 1 Rüstplatz

▶ Flexibles Fertigungssystem

In der Vollausbaustufe können sowohl der Werkzeug- als auch der Werkstückfluss automatisiert werden. Die Abbildung stellt eine Variante eines flexiblen Fertigungssystems dar, das über ein Werkzeugregallager verfügt. Der Roboter kann Werkzeuge in den Scheibenmagazinen mehrerer einzelner Maschinen austauschen. Für den Werkstückfluss ist ein Regalbediengerät zur Palettenhandhabung realisiert, an das drei Rüstplätze, ein Hochregallager mit 90 Palettenspeicherplätzen und die Bearbeitungsmaschinen angebunden sind.

AUTOMATION () MASCHINE • VERFÜGBARKEIT AUF EINEN BLICK!							
	GROB-Palettenrundspeichersystem (PSS-R)	Palettenlinearspeichersystem (PSS-L)	Werkstückhandhabung				
G350	Auf Anfrage	12 Paletten	Auf Anfrage				
G550	5/10/13 Ablageplätze + je 1 Rüstplatz	10 Paletten	Auf Anfrage				
G750	Auf Anfrage	6 Paletten	Auf Anfrage				

Optimierung der Maschinenkinematik

Jede Werkzeugmaschine weist geringfügige, systembedingte Geometrieabweichungen in den Rundachsen auf. Diese einzelnen, minimalen Abweichungen summieren sich zu einer volumetrischen Geometrieabweichung innerhalb des Arbeitsraums auf.

Mit folgenden Lösungen zur Optimierung der Maschinenkinematik können diese Abweichungen analysiert und infolgedessen minimiert werden.

GROB-Schwenkachsenkalibrierung (GSC)

Funktionsweise

- Ermittlung der aktuellen Kinematik von A'- und B'-Achse durch einen 3D-Messtaster und eine hochpräzise Messkugel
- Anzeige der Messwerte zur Analyse der geometrischen Abweichung
- Optimierung der Schwenkgenauigkeit auf Basis der Messergebnisse

Besonderheiten

- GSC liefert eine erheblich höhere Genauigkeit als ein üblicher 5-Achsen-Check
- Genauigkeitsverbesserung ohne Einsatz von Schwenkzyklen

GROB-Prüfmittel-Set zur Kinematikvermessung

Als Ergänzung zu den Kinematikmesszyklen sind alle zum Vermessen erforderlichen Messmittel in einem Prüfmittel-Set zusammengefasst.

Enthaltene Komponenten

- Zwei Karbon-Messstative mit hochpräziser Messkugel zum Einschrauben
- Parallelendmaß
- Magnetfuß mit schaltbarem Dauermagnet
- Feinfühlhebelmessgerät, Skalenteilungswert: 0,002 mm
- Hochpräziser Messring und weiteres Zubehör

Interpolationsdrehen PLUS

Interpolationsdrehen PLUS ermöglicht in Form einer reinen Softwarelösung die Herstellung von beliebigen Drehoperationen auf einem Universal-Bearbeitungszentrum von GROB – auch bei Drehoperationen, die nicht koaxial zur B'-Achse sind. Durch die Möglichkeit, neben neuen, schnell lieferbaren Werkzeugen auch vorhandene Standardwerkzeuge einzusetzen, ist die Anwendung wirtschaftlich.

Dadurch eignet sich Interpolationsdrehen PLUS ideal zur Herstellung von Prototypen und Kleinserien.

Funktionsweise

Interpolationsdrehen PLUS simuliert eine Durchmesserachse (Planschlitten) durch die gleichzeitige Interpolation von X-, Y'- und Motorspindel-Achse (Z). Die Programmierung und die Handhabung entsprechen der einer CNC-Drehmaschine bzw. einer Maschine mit Planzugeinrichtung oder einem aktorischen Werkzeug.

Energie-Effizienz-Paket

Für eine effiziente Energienutzung mittels Reduzierung des Stromverbrauchs der Universal-Bearbeitungszentren mit SIEMENS-Steuerung.

Paketinhalt

- Abschaltstrategien für Maschinenkühlung, Späneförderer und diverse Lüfter
- Optimierte Regelstrategie für Motorspindel und Achsantriebe
- Zeitgesteuerte Abschaltung der Maschine

OPTIONSPAKET (MASCHINE • V	ERFÜGBARKEIT AU	F EINEN BLICK!	
	GROB-Schwenkachsen- kalibrierung (GSC)	GROB-Prüfmittel- Set	Interpolations- drehen PLUS	Energie- Effizienz-Paket
G350	•	•	•	•
G550	•	•	•	•
G750	• *	•	•	•

* G750 nur in Verbindung mit GROB-Schwenkachsenkalibrierung (GSC) erhältlich

26

BEARBEITUNGSBEISPIELE

GROB-NET⁴Industry

Ihre Applikationen für globale Transparenz im gesamten Produktionsprozess

MASCHINENZUSTANDSÜBERWACHUNG

GROB⁴Line

Per Smartphone die Maschine im Blick

- Verbindung der GROB-Maschine mit dem Internet
- Maschinenkontrolle durch Smartphones oder Rechner mit Internetverbindung möglich
- Benachrichtigungsfunktion (z.B. Job-Ende, Maschinenstillstand)
- Minimierung der Stillstandszeiten durch sofortige Reaktion des Technikers

KVP

GROB⁴Analyze

Feedback der Maschine für den KVP

- Darstellung des aktuellen Maschinenzustands und der Vergangenheitswerte
- Rechnerische Ermittlung mit Visualisierung genauer Kennzahlen
- Ursachenermittlung und Aufzeigen unproduktiver Phasen

ARBEITSVORBEREITUNG

GROB⁴Connect

Verbindung von realer Welt zum ERP-System

- Kopplung der Maschine an das ERP-System
- Übermittlung aller produktionsrelevanten Daten an Maschinenbediener via Webtechnologie
- Informationseingabe über die Maschinensteuerung in das ERP-System möglich
- Auftragsrückmeldung und Werkzeuganforderung direkt von der Maschine aus handhabbar

INSTANDHALTUNG

GROB⁴Care

Das Service- und Instandhaltungsportal

- Kontrolle und Steuerung von Wartungstätigkeiten und -intervallen durch das Logbuch
- Direkte Kontaktherstellung zum GROB-Service bei Maschinenproblemen
- Frühzeitiges Vermeiden von Maschinenausfällen durch permanentes Monitoring

TRAINING

GROB⁴Coach

Programmieren, Simulieren und Trainieren

- Komfortables Programmieren von Teileprogrammen möglich
- Effektive, PC-gestützte Trainingssoftware für CNC-Anfänger und -Experten

NC-PROGRAMMIERUNG

GROB⁴Simulate

Komplexe Vorgänge und Teile einfach simulieren

- Virtuelle Maschine mit Darstellung von Bauteilen, mit Werkzeugen und Aufspannsystemen
- Test des NC-Programms für eine 100 % kollisionsfreie Werkstückbearbeitung
- CAM-System- und Steuerungsunabhängigkeit

BREMSKLAPPENBESCHLAG

Bearbeitungsma	schine: G550 Ma	Be Rohmaterial [mm]: 307x221x9	0
Branche	Aerospace	Motorspindel	30.000 min ⁻¹
Material	F7050	Leistung/Drehmoment	53 kW/63 Nm
Bearbeitungszeit	39 Minuten	Zerspanvolumen	87 %
_			

Herausforderungen:

Wandstärken 1,5 mm • Komplettbearbeitung in einer Aufspannung • Hohes Zerspanungsvolumen durch höchste Maschinendynamik

ABTRIEBSCARRIER

Bearbeitungsma	schine: G350 Ma	Be Rohmaterial [mm]: Ø 174x36	
Branche	Maschinenbau	Motorspindel	12.000 min ⁻¹
Material	C45	Leistung/Drehmoment	52 kW/83 Nm
Bearbeitungszeit	8 Minuten	Zerspanvolumen	_
Herausforderung	en:		

Geringe Positionstoleranzen der Bohrungen von 0,012 mm

MEISSELHALTERUNG

Bearbeitungsma	schine: G350 Ma	Be Rohmaterial [mm]: Ø 80 x 250	
Branche	Medizintechnik	Motorspindel	16.000 min ⁻¹
Material	X5CrNiCuNb16-4	Leistung/Drehmoment	32 kW/206 Nm
Bearbeitungszeit	90 Minuten	Zerspanvolumen	_
Horougfordorung	an.		

Herausforderungen:

Die herausragende Stabilität der Maschine erlaubt eine deutliche Reduzierung der Bearbeitungszeit durch größere Zustellungen

SEGMENT EINER REIFENFORM

Bearbeitungsma	schine: G350 Ma	ße Rohmaterial [mm]: 300x300x1	00
Branche	Formenbau	Motorspindel	30.000 min ⁻¹
Material	F7050	Leistung/Drehmoment	53 kW/63 Nm
Bearbeitungszeit	6 Stunden	Zerspanvolumen	_
_			

Herausforderungen:

Kleine Ausgleichsbewegungen aufgrund horizontaler A'-/B'-Kinematik •

Schnellste Bearbeitungszeiten durch hohe Maschinendynamik • Hohe Oberflächenqualität

Leistungsfräsen – Leistungsbohren – Gewindeschneiden

Eine Auswahl an Leistungsbeispielen veranschaulicht die vielseitigen Einsatzmöglichkeiten der Universal-Bearbeitungszentren von GROB.

Motorspindel 12.000 Bearbeitung auf eine		HSK-A63
Bearbeitungsart/ Werkzeug	Stahl – 16MnCr	·S5
Bohren	v _c = 160	n = 1.019
Ø 50 mm	$f_u = 0.13$	$v_f = 132$
	$a_p/a_e = 50/50$	Q = 330
Gewindeschneiden	v _c = 15	n = 199
M24	$f_u = 3$	$v_f = 597$
Fräsen mit Messerkopf	v _c = 300	n = 1.516
Ø 63 mm z = 5	$f_z = 0.24$	$v_f = 1.743$
2 – 3	$a_{p}/a_{e} = 3/55$	Q = 288

Motorspindel 16.000 Bearbeitung auf eine		/HSK-A63
Bearbeitungsart/ Werkzeug	Stahl – 16MnCr	S 5
Bohren	$v_c = 160$	n = 849
Ø 60 mm	$f_u = 0.18$	v _f = 153
	$a_p/a_e = 50/60$	Q = 459
Gewindeschneiden	$v_{c} = 13$	n = 115
M36	$f_u = 4$	v _f = 460
Fräsen mit Messerkopf	$v_{c} = 330$	n = 1.050
Ø 100 mm z = 12	$f_z = 0.18$	v _f = 2.268
2 – 12	$a_p/a_e = 3/95$	Q = 646

Abbildungen beispielhaft.

Schnittgeschwindigkeit: v_c [m/min] Spindeldrehzahl: n [min⁻¹] Vorschub pro Umdrehung: f_u [mm/U] Vorschub pro Zahn: f_z [mm/Zahn] Vorschubgeschwindigkeit: v_f [mm/min] Schnitttiefe: a_p [mm] Schnittbreite: a_p [mm] Zeitspanvolumen: Q [cm³/min] Anzahl der Schneiden: z

Motorspindel 18.000 Bearbeitung auf eine		n)/HSK-A63
Bearbeitungsart/ Werkzeug	Aluminium –	F7050
Fräsen mit Schaftfräser	$v_c = 1.131$	n = 18.000
Ø 20 mm 7 = 3	$f_z = 0.25$	$v_f = 13.500$
2 – 3	$a_p = 13$	$a_e = 20$
	Q = 3.510	
Fräsen mit Messerkopf	$V_c = 1.809$	n = 17.994
Ø 32 mm	$f_z = 0.18$	$v_f = 9.717$
z = 3	$a_p = 10$	$a_e = 32$
	Q = 3.109	

Motorspindel 30.000 Bearbeitung auf eine)/HSK-A63
Bearbeitungsart / Werkzeug	Aluminium – I	F7050
Fräsen mit Schaftfräser	$v_c = 2.120$	n = 26.993
Ø 25 mm	$f_z = 0.09$	$v_f = 7.288$
2-3	$a_p = 19$	$a_e = 25$
	Q = 3.462	
Fräsen mit Messerkopf	$v_c = 2.042$	n = 13.000
Ø 50 mm	$f_z = 0.24$	$v_f = 12.480$
z = 4	$a_p = 6$	$a_e = 50$
	Q = 3.744	

Abbildungen beispielhaft.

Motorspindel 9.000 n Bearbeitung auf eine		HSK-A100
Bearbeitungsart / Werkzeug	Stahl – 16MnCı	r\$5
Bohren	$v_c = 150$	n = 682
Ø 70 mm	$f_u = 0,40$	$v_f = 273$
	a _p = 50	Q = 955
Fräsen mit Igelfräser	v _c = 80	n = 509
Ø 50 mm	$f_z = 0.12$	$v_f = 244$
z = 4	$a_p/a_e = 40/50$	Q = 488
Fräsen mit Messerkopf	$v_c = 250$	n = 637
Ø 125 mm	$f_z = 0.3$	$v_f = 2.675$
z = 14	$a_p/a_e = 5/90$	Q = 1.204

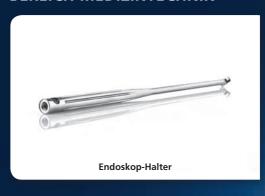
30

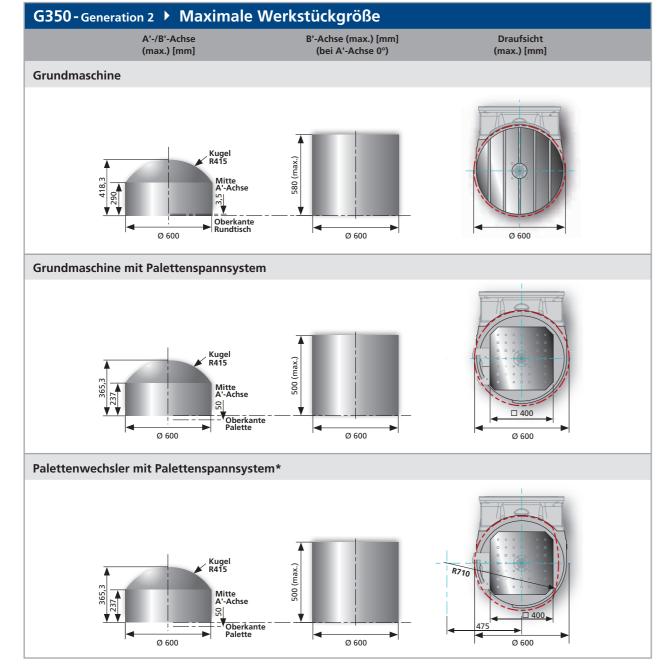
7

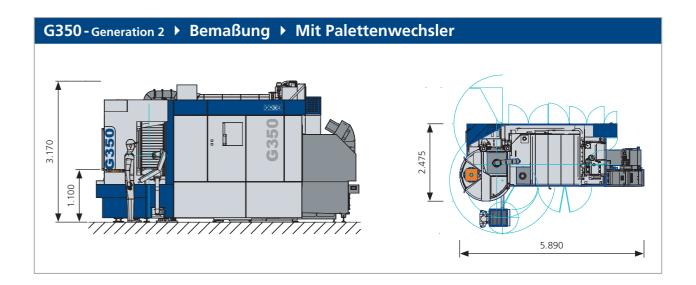
BEREICH AEROSPACE

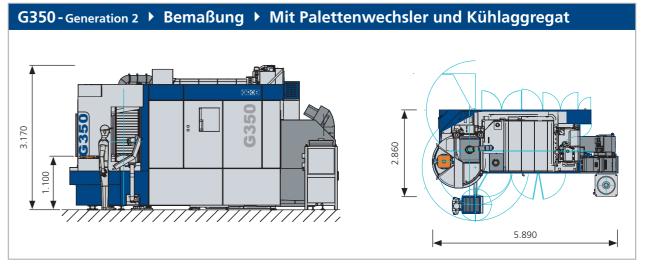
BEREICH AUTOMOTIVE

BEREICH MASCHINENBAU

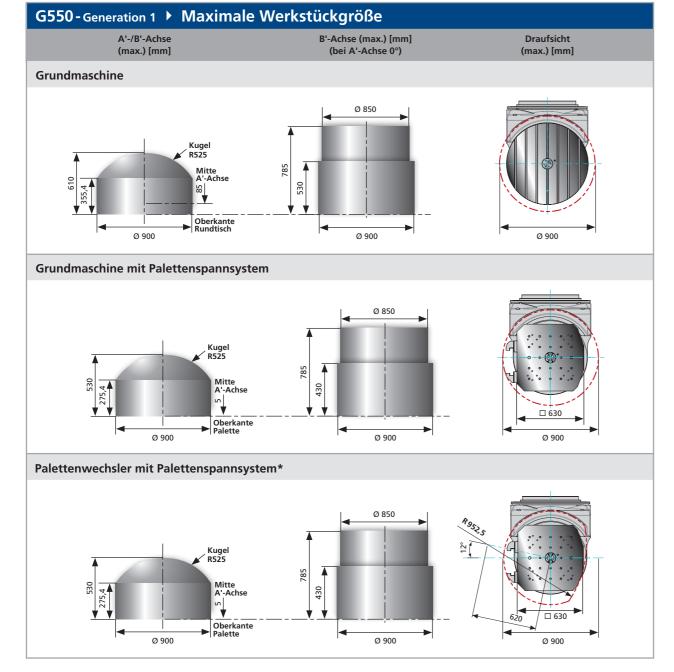

BEREICH WERKZEUG- UND FORMENBAU


BEREICH MEDIZINTECHNIK

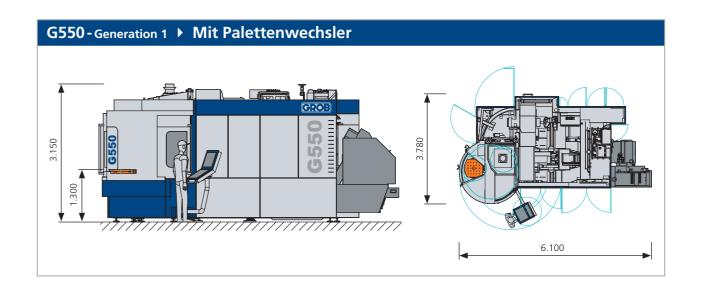


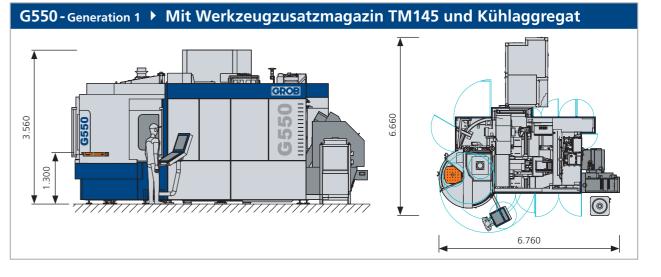


G350-Generation 2 ➤ Bemaßung ➤ Grundmaschine 5.680



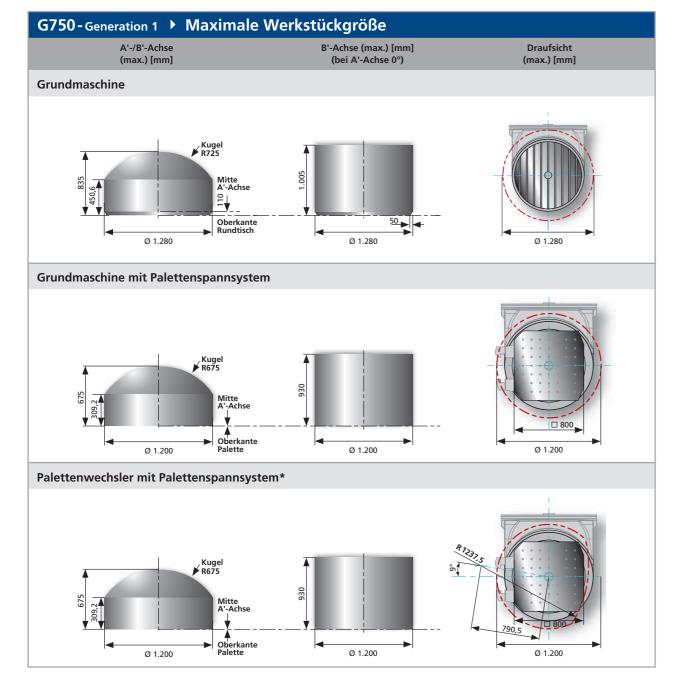
Maßangaben [mm] ohne Berücksichtigung der Wartungs- und Bedienbereiche.

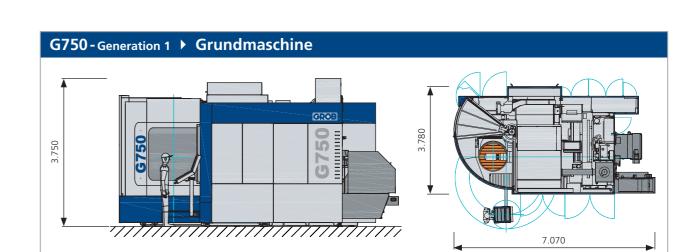


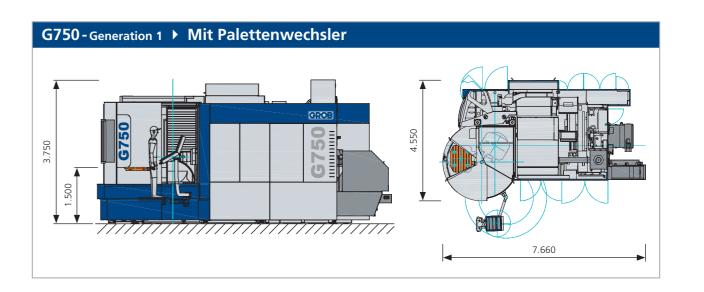


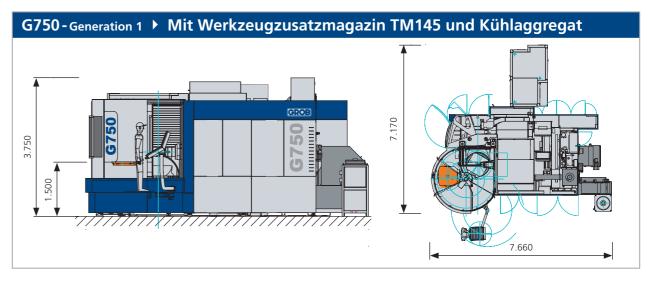
* Maximale Werkstückgröße mit Einschränkungen

G550-Generation 1 ➤ Grundmaschine **G**51 6.150




G550 und G750 auch als Fräs-Dreh-Bearbeitungszentren verfügbar.


Maßangaben [mm] ohne Berücksichtigung der Wartungs- und Bedienbereiche.



G550 und G750 auch als Fräs-Dreh-Bearbeitungszentren verfügbar.

Maßangaben [mm] ohne Berücksichtigung der Wartungs- und Bedienbereiche.

Maschinenkonzept

Maschinenkompone S. 8 – 18

ehör 9 – 21

ıtomatisi erungstechni 22 — 25

Softwareop S. 26 – 28

MASCHINENTYP		G35	0 - Gener	ration 2	
SCHLITTEN					
Arbeitswege in X-/Y'-/Z-Achse [mm]			600/855/7	50	
Geschwindigkeiten in X-/Y'-/Z-Achse [m/min]			70/45/90)	
Beschleunigungen max. in X-/Y'-/Z-Achse [m/s²] ⁽¹⁾			5/4/7		
ubkräfte max. in X-/Y'-/Z-Achse [kN] ⁽¹⁾			8/8/8		
enauigkeiten (ISO 230-2:2006)			0,006		
sitioniergenauigkeit in X-/Y'-/Z-Achse [mm] iederholpräzision der Positionierung in X-/Y'-/Z-Achse [mm]			<0,0025		
AUPTSPINDEL			<0,0025		
Werkzeugschnittstelle für Kegelhohlschäfte nach ISO 12164-1 ⁽⁶⁾			HSK-A63		
urchmesser am vorderen Lager der Spindellagerung [mm]			70		
Drehzahl n _{max} [min ⁻¹]			12.000		
Antriebsleistung max. bei 100 % / 40 % ED [kW]			29/39		
Spindel-Drehmoment max. bei 100 % / 40 % ED [Nm]			34,6/46,6	5	
Span-zu-Span-Zeit t ₂ nach VDI 2852 [s] bezogen auf Drehzahl [min ⁻¹]		_	/ 2,7 bis n =		
Werkzeugwechselverfahren: Pick-up / Werkzeugwechselarm (SIEMENS 840D sl)					
Verkzeugschnittstelle für Kegelhohlschäfte nach ISO 12164-1	HSK-A63	HSK-A63	HSK-A63	HSK-A6	53 HSK-A63
Durchmesser am vorderen Lager der Spindellagerung [mm]	70	70	70	80	65
			21.000		
Drehzahl n _{max} [min ⁻¹]	12.000	18.000		16.000	
Antriebsleistung max. bei 100 % / 40 % ED [kW]	40/52	29/39	29/39	25/32	
Spindel-Drehmoment max. bei 100 % / 40 % ED [Nm]	63,7/82,8	34,6/46,6	34,6/46,6	5 159/20	06 48/63
Span-zu-Span-Zeit t ₂ nach VDI 2852 [s] bezogen auf Drehzahl [min ⁻¹] Werkzeugwechselverfahren: Pick-up / Werkzeugwechselarm (SIEMENS 840D sl)	- / 2,7 bis n = max	- / 2,7 bis n = max	-/ 2,7 bis n = max	-/ 2,7 bis n = 7.50	
VERKZEUGMAGAZIN	Einsch	eibenmagazir		Doppelsche	ibenmagazin
CHEIBENMAGAZIN	l	HSK-A63		HSK-A63	HSK-A63
nzahl Plätze; Standard		60		117	105
/erkzeuglänge max. [mm]					
Horizontale Scheibenanordnung (unten/oben/über beide Scheiben)		365		365/180	365/180/550 ⁽³⁾
Vertikale Scheibenanordnung (vorn/hinten)		-		-	-
Verkzeugdurchmesser max. [mm]					
Ohne Durchmessereinschränkung für Nachbarplätze		70		70	70
Mit Durchmessereinschränkung für Nachbarplätze		170		170	170
Werkzeuggewichte max. [kg]		8		8	8
Kippmoment um Greiferrille max. [Nm]		12		12	12
WERKSTÜCK Tischdurchmesser [mm]			E70		
Tischdurchmesser [mm] Tischbeladung [kg] (mit/ohne Palette)			570 338/400		
Störkreisdurchmesser [mm]			600		
ANSCHLUSSWERTE			000		
Leistungsbedarf bei 3 AC 400V/50 Hz [kVA]			mind. 42		
Druckluft [bar]			5		
GEWICHT (ca.)					
Gesamtgewicht [kg] (ohne/mit Palettenwechsler)			15.300/17.5	500	
AUSBAUSTUFEN					
Automatischer Palettenwechsler			2-fach		
Palettengröße [mm]			400 x 400)	
raicticingrobe [mm]					
Palettenwechselzeit [s] ⁽⁷⁾			12,0		

G550 und G750 auch als Fräs-Dreh-Bearbeitungszentren verfügbar, optionale Werkzeugschnittstellen auf Anfrage.

Technische Änderungen vorbehalten

⁽¹⁾ Abhängig vom Motorspindeltyp
(2) In Kombination einer SIEMENS-Maschinensteuerung und eines Werkzeugwechselarms verfügbar
(3) Mit Einschränkung im Arbeitsraum
(4) Höhere Werte bis 2.000 kg ohne Palette und bis 1.500 kg mit Palette auf Anfrage
(5) Beim Werkzeugwechsel eines Planzugwerkzeuges verlängert sich die Span-zu-Span-Zeit um + 0,8 Sekunden
(6) Optionale Werkzeugschnittstellen auf Anfrage
(7) Zeitangabe ohne Auflagekontrollsystem

AFTER-SALES-SERVICE

MODERNISIERUNG BERATUNG OPTIMIERUNG ANLAGENPLANUNG

INSTANDHALTUNG RETROFIT VERLAGERUNG SCHULUNG

REPARATUR ERSATZTEILMANAGEMENT INSPEKTION TELESERVICE

So vielseitig wie die Ansprüche unserer Kunden

Die jahrzehntelange Erfahrung, hohe Qualität und Zuverlässigkeit von GROB als einer der weltweit führenden Hersteller von Bearbeitungszentren sowie komplexen Systemen für Fertigung und Montage, garantieren den GROB-Kunden eine optimale Betreuung in allen Belangen des After-Sales-Service.

Service beginnt bei GROB mit der Planung und Koordination der Maschinenaufstellung und damit bei der Unterstützung zum Produktionsstart. Er reicht von abgestimmten Schulungsleistungen, der Beratung zu Ersatz- und Verschleißteilen, Betriebsmitteln, Nutzungsoptimierung und Anlagenüberholung bis hin zur prompten Hilfe bei Maschinenstörungen im Produktionsprozess.

Zusammen mit unseren Service- und Vertriebsniederlassungen sowie den internationalen GROB-Vertretungen garantieren wir höchste Qualität und besten Service im weltweiten GROB-Service-Netzwerk

Service-Hotline: +49 8261 996-777

Unter unserer Hotline erreichen Sie kompetente, qualifizierte Hilfe:

- O 24 STUNDEN
- **O** 7 TAGE DIE WOCHE
- **360 TAGE IM JAHR**
- O RUND UM DEN GLOBUS

DIF GROB-GRUPPE Tradition - Know-how über Generationen

Die Erfolgsgeschichte der GROB-WERKE beginnt im Jahre 1926 mit der Firmengründung der Ernst Grob Werkzeugund Maschinenfabrik durch Ernst Grob. Als global operierendes Familienunternehmen in der Entwicklung und Herstellung von Anlagen und Werkzeugmaschinen schlägt das Herz der GROB-WERKE seit 1968 in Mindelheim, Bayern. Mit unseren weiteren Produktionsstätten in Bluffton (Ohio, USA), São Paulo (Brasilien) und Dalian (China) sowie weltweiten Service- und Vertriebsniederlassungen sind wir rund um den Globus vertreten.

Jahrzehntelange Erfahrung, hohe Qualität und Zuverlässigkeit in Ausführung und Lieferung garantieren den GROB-Kunden eine optimale Betreuung in allen Belangen des Systemgeschäfts und der Universalmaschinen

Das GROB-Produktportfolio

SYSTEMLÖSUNGEN

- G-Module
- Modulare Sondermaschinen
- Automatisierung
- Transportsysteme
- Schlüsselfertige Anlagen (Turn-Key-Projekte)
- GROB-Thermisches-Beschichtungssystem
- Elektromobilität

UNIVERSALMASCHINEN

- 5-Achs Universal-Fräs-Bearbeitungszentren
- 5-Achs Universal-Fräs-Dreh-Bearbeitungszentren
- Großbearbeitungszentren

MONTAGEANLAGEN

- Kundenspezifische Montagesysteme
- Einzelne Montageeinheiten

Die GROB-Kernkompetenzen

- Bei GROB finden Sie alle Kernkompetenzen unter einem Dach: Vertrieb • Konstruktion • Produktion • Montage • Inbetriebnahme • Kundenservice
- Klare Vertriebsstruktur: Sie haben einen festen Ansprechpartner für den gesamten Projektzyklus
- Unsere Produktion bietet Ihnen höchste Fertigungstiefe, wodurch wir Kapazitäten dynamisch steuern und in Engpass-Situationen flexibel erhöhen können
- O Unser Kundenservice ist rund um die Uhr für Sie erreichbar

GROB-WERKE GmbH & Co. KG

Mindelheim, DEUTSCHLAND Tel.: +49 8261 996-0 Fax: +49 8261 996-268 E-Mail: info@de.grobgroup.com

B. GROB DO BRASIL S.A.

São Paulo, BRASILIEN
Tel.: +55 11 4367-9100
Fax: +55 11 4367-9101
E-Mail: info@br.grobgroup.com

GROB SYSTEMS, Inc.

Bluffton, Ohio, USA Tel.: +1 419 358-9015 Fax: +1 419 369-3330 E-Mail: info@us.grobgroup.com

GROB MACHINE TOOLS (DALIAN) Co. Ltd.

Dalian, V.R. CHINA Tel.: +86 411 39266-488 Fax: +86 411 39266-589 E-Mail: dalian@cn.grobgroup.com

GROB KOREA Co. Ltd.

Seoul, SÜDKOREA Tel.: +82 31 8064-1880 E-Mail: info@kr.grobgroup.com

GROB MACHINE TOOLS (BEIJING) Co. Ltd.

Peking, V.R. CHINA Tel.: +86 10 6480-3711 E-Mail: beijing@cn.grobgroup.com

GROB MACHINE TOOLS (BEIJING) Co. Ltd.

Shanghai, V.R. CHINA Tel.: +86 21 3763-3018 E-Mail: shanghai@cn.grobgroup.com

GROB MACHINE TOOLS INDIA Pvt. Ltd.

Hyderabad, INDIEN
Tel.: +91 40 4202-3336
E-Mail: info@in.grobgroup.com

GROB RUSSLAND GmbH

Moskau, RUSSLAND Tel.: +7 495 795-0285 E-Mail: info@ru.grobgroup.com

GROB MACHINE TOOLS U.K. Ltd.

Birmingham, GROSSBRITANNIEN Tel.: +44 121 366-9848 E-Mail: info@uk.grobgroup.com

GROB MEXICO S.A. de C.V.

Querétaro, MEXIKO Tel.: +52 442 713-6600 E-Mail: info@mx.grobgroup.com

GROB HUNGARIA Kft.

Györ, UNGARN Tel.: +36 96 517229 E-Mail: info@hu.grobgroup.com

GROB ITALIA S.r.l.

Turin, ITALIEN
Tel.: +39 011 3000-420
E-Mail: info@it.grobgroup.com

GROB POLSKA Sp. z o.o.

Posen, POLEN Tel.: +48 61 664-2790 E-Mail: info@pl.grobgroup.com

www.grobgroup.com